Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 90
1.
Neuropsychopharmacology ; 49(6): 905-914, 2024 May.
Article En | MEDLINE | ID: mdl-38177696

The NMDA receptor (NMDAR) antagonist ketamine has shown great potential as a rapid-acting antidepressant; however, its use is limited by poor oral bioavailability and a side effect profile that necessitates in-clinic dosing. GM-1020 is a novel NMDAR antagonist that was developed to address these limitations of ketamine as a treatment for depression. Here, we present the preclinical characterization of GM-1020 alongside ketamine, for comparison. In vitro, we profiled GM-1020 for binding to NMDAR and functional inhibition using patch-clamp electrophysiology. In vivo, GM-1020 was assessed for antidepressant-like efficacy using the Forced Swim Test (FST) and Chronic Mild Stress (CMS), while motor side effects were assessed in spontaneous locomotor activity and on the rotarod. The pharmacokinetic properties of GM-1020 were profiled across multiple preclinical species. Electroencephalography (EEG) was performed to determine indirect target engagement and provide a potentially translational biomarker. These results demonstrate that GM-1020 is an orally bioavailable NMDAR antagonist with antidepressant-like efficacy at exposures that do not produce unwanted motor effects.


Antidepressive Agents , Receptors, N-Methyl-D-Aspartate , Animals , Antidepressive Agents/administration & dosage , Antidepressive Agents/pharmacology , Antidepressive Agents/pharmacokinetics , Receptors, N-Methyl-D-Aspartate/antagonists & inhibitors , Male , Rats , Mice , Administration, Oral , Rats, Sprague-Dawley , Biological Availability , Ketamine/administration & dosage , Ketamine/pharmacology , Depression/drug therapy , Motor Activity/drug effects , Dose-Response Relationship, Drug , Mice, Inbred C57BL , Excitatory Amino Acid Antagonists/administration & dosage , Excitatory Amino Acid Antagonists/pharmacology , Excitatory Amino Acid Antagonists/pharmacokinetics , Humans
2.
Article En | MEDLINE | ID: mdl-37865392

Exposure to stressful experiences accounts for almost half of the risk for mental disorders. Hence, stress-induced alterations represent a key target for pharmacological interventions aimed at restoring brain function in affected individuals. We have previously demonstrated that lurasidone, a multi-receptor antipsychotic drug approved for the treatment of schizophrenia and bipolar depression, can normalize the functional and molecular impairments induced by stress exposure, representing a valuable tool for the treatment of stress-induced mental illnesses. However, the mechanisms that may contribute to the therapeutic effects of lurasidone are still poorly understood. Here, we performed a transcriptomic analysis on the prefrontal cortex (PFC) of adult male rats exposed to the chronic mild stress (CMS) paradigm and we investigated the impact of chronic lurasidone treatment on such changes. We found that CMS exposure leads to an anhedonic phenotype associated with a down-regulation of different pathways associated to neuronal guidance and synaptic plasticity within the PFC. Interestingly, a significant part of these alterations (around 25%) were counteracted by lurasidone treatment. In summary, we provided new insights on the transcriptional changes relevant for the therapeutic intervention with lurasidone, which may ultimately promote resilience.


Antipsychotic Agents , Lurasidone Hydrochloride , Humans , Rats , Male , Animals , Lurasidone Hydrochloride/pharmacology , Antipsychotic Agents/pharmacology , Antipsychotic Agents/metabolism , Gene Expression Profiling , Prefrontal Cortex/metabolism , Anhedonia/physiology
3.
Psychopharmacology (Berl) ; 240(11): 2419-2433, 2023 Nov.
Article En | MEDLINE | ID: mdl-37310446

OBJECTIVES: NLX-101 and NLX-204 are highly selective serotonin 5-HT1A 'biased' agonists, displaying potent and efficacious antidepressant-like activity upon acute administration in models such as the forced swim test. METHODS: we compared the effects of repeated administration of NLX-101, NLX-204 and ketamine in the chronic mild stress (CMS) model of depression, considered to have high translational potential, on sucrose consumption (anhedonia measure), novel object recognition (NOR; working memory measure) and elevated plus maze (EPM; anxiety measure) in male Wistar and Wistar-Kyoto rats (the latter being resistant to classical antidepressants). RESULTS: in Wistar rats, NLX-204 and NLX-101 (0.08-0.16 mg/kg i.p.), like ketamine (10 mg/kg i.p.) dose-dependently reversed CMS-induced sucrose intake deficit from treatment Day 1, with nearly full reversal observed at the higher dose at Days 8 and 15. These effects persisted for 3 weeks following treatment cessation. In the NOR test, both doses of NLX-101/NLX-204, and ketamine, rescued the deficit in discrimination index caused by CMS on Days 3 and 17; all three compounds increased time spent in open arms (EPM) but only NLX-204 achieved statistical significance on Days 2 and 16. In Wistar-Kyoto rats, all 3 compounds were also active in the sucrose test and, to a lesser extent, in the NOR and EPM. In non-stressed rats (both strains), the three compounds produced no significant effects in all tests. CONCLUSIONS: these observations further strengthen the hypothesis that biased agonism at 5-HT1A receptors constitutes a promising strategy to achieve rapid-acting/sustained antidepressant effects combined with activity against TRD, in addition to providing beneficial effects against memory deficit and anxiety in depressed patients.


Ketamine , Humans , Rats , Male , Animals , Ketamine/pharmacology , Receptor, Serotonin, 5-HT1A , Serotonin , Rats, Inbred WKY , Serotonin 5-HT1 Receptor Agonists , Antidepressive Agents/pharmacology , Serotonin Receptor Agonists , Rats, Wistar , Sucrose
4.
Neuropsychopharmacology ; 48(10): 1475-1483, 2023 09.
Article En | MEDLINE | ID: mdl-37380799

Brain metabolism is a fundamental process involved in the proper development of the central nervous system and in the maintenance of the main higher functions in humans. As consequence, energy metabolism imbalance has been commonly associated to several mental disorders, including depression. Here, by employing a metabolomic approach, we aimed to establish if differences in energy metabolite concentration may underlie the vulnerability and resilience in an animal model of mood disorder named chronic mild stress (CMS) paradigm. In addition, we have investigated the possibility that modulation of metabolite concentration may represent a pharmacological target for depression by testing whether repeated treatment with the antidepressant venlafaxine may normalize the pathological phenotype by acting at metabolic level. The analyses were conducted in the ventral hippocampus (vHip) for its key role in the modulation of anhedonia, a core symptom of patients affected by depression. Interestingly, we showed that a shift from glycolysis to beta oxidation seems to be responsible for the vulnerability to chronic stress and that vHip metabolism contributes to the ability of the antidepressant venlafaxine to normalize the pathological phenotype, as shown by the reversal of the changes observed in specific metabolites. These findings may provide novel perspectives on metabolic changes that could serve as diagnostic markers and preventive strategies for the early detection and treatment of depression as well as for the identification of potential drug targets.


Antidepressive Agents , Glucose , Rats , Animals , Humans , Venlafaxine Hydrochloride/pharmacology , Rats, Wistar , Glucose/metabolism , Antidepressive Agents/pharmacology , Antidepressive Agents/therapeutic use , Antidepressive Agents/metabolism , Anhedonia/physiology , Hippocampus , Stress, Psychological/metabolism , Depression/drug therapy , Depression/metabolism , Disease Models, Animal
5.
Int J Mol Sci ; 24(8)2023 Apr 15.
Article En | MEDLINE | ID: mdl-37108481

Despite several antidepressant treatments being available in clinics, they are not effective in all patients. In recent years, N-acetylcysteine (NAC) has been explored as adjunctive therapy for many psychiatric disorders, including depression, for its antioxidant properties. Given the promising efficacy of this compound for the treatment of such pathologies, it is fundamental to investigate, at the preclinical level, the ability of the drug to act in the modulation of neuroplastic mechanisms in basal conditions and during challenging events in order to highlight the potential features of the drug useful for clinical efficacy. To this aim, adult male Wistar rats were treated with the antidepressant venlafaxine (VLX) (10 mg/kg) or NAC (300 mg/kg) for 21 days and then subjected to 1 h of acute restraint stress (ARS). We found that NAC enhanced the expression of several immediate early genes, markers of neuronal plasticity in the ventral and dorsal hippocampus, prefrontal cortex and amygdala, and in particular it mediated the acute-stress-induced upregulation of Nr4a1 expression more than VLX. These data suggested the ability of NAC to induce coping strategies to face external challenges, highlighting its potential for the improvement of neuroplastic mechanisms for the promotion of resilience, in particular via the modulation of Nr4a1.


Acetylcysteine , Genes, Immediate-Early , Animals , Male , Rats , Acetylcysteine/pharmacology , Acetylcysteine/therapeutic use , Antidepressive Agents/therapeutic use , Rats, Wistar , Venlafaxine Hydrochloride/pharmacology , Venlafaxine Hydrochloride/therapeutic use
6.
Curr Protoc ; 3(3): e712, 2023 Mar.
Article En | MEDLINE | ID: mdl-36892313

This article describes a chronic mild stress (CMS) model for predicting antidepressant response and investigating mechanisms of antidepressant action in rats. Following exposure to a variety of mild stressors for several weeks, the rats' behavior is modified in several ways that parallel symptoms of depression. Among these is a substantial reduction in consumption of a 1% sucrose solution, which models the cardinal symptom of major depression, anhedonia. Our standard procedure employs a battery of behavioral tests, comprising weekly assessment of sucrose intake and, at the end of treatment, the elevated plus-maze and novel object recognition tests to assess the anxiogenic and dyscognitive effects of CMS. Chronic administration of antidepressant drugs reverses the decreased sucrose intake and other behavioral changes in these subjects. Also effective are second-generation antipsychotics. The CMS model can be employed in discovery programs to identify anti-anhedonic drugs (e.g., antidepressants and antipsychotics) that act more quickly than existing agents. While most antidepressants require 3 to 5 weeks to normalize behavior, some treatments provide a faster onset of action. For example, the CMS-induced deficits can be reversed by acute or sub-chronic application of treatments that act rapidly in depressed patients, such as deep brain stimulation (DBS), ketamine, and scopolamine, as well as several compounds that have yet to be tested in humans but have fast-onset antidepressant-like effects in animals, such as the 5-HT-1A biased agonists NLX-101 and GLYX-13. Application of the CMS model in Wistar-Kyoto (WKY) rats causes similar behavioral changes to those seen in Wistars, but these are not reversed by antidepressant treatment. However, WKY rats respond to DBS and ketamine, which are effective in patients who are antidepressant non-responders, establishing CMS in WKY rats as a model of treatment-resistant depression. © 2023 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol: Induction of chronic mild stress in rats as a model of depression and treatment-resistant depression.


Depressive Disorder, Treatment-Resistant , Ketamine , Humans , Rats , Animals , Depression/drug therapy , Rats, Inbred WKY , Rats, Wistar , Ketamine/pharmacology , Ketamine/therapeutic use , Antidepressive Agents/pharmacology , Antidepressive Agents/therapeutic use , Depressive Disorder, Treatment-Resistant/drug therapy , Sucrose/therapeutic use
7.
Psychopharmacology (Berl) ; 240(4): 1001-1010, 2023 Apr.
Article En | MEDLINE | ID: mdl-36820870

RATIONALE: Stress represents a major contributor to the development of mental illness. Accordingly, exposure of adult rats to chronic stress represents a valuable tool to investigate the ability of a pharmacological intervention to counteract the adverse effects produced by stress exposure. OBJECTIVES: The aim of this study was to perform a time course analysis of the treatment with the antipsychotic drug lurasidone in normalizing the anhedonic phenotype in the chronic mild stress (CMS) model in order to identify early mechanisms that may contribute to its therapeutic activity. METHODS: Male Wistar rats were exposed to CMS or left undisturbed for 7 weeks. After two weeks of stress, both controls and CMS rats were randomly divided into two subgroups that received vehicle or lurasidone for five weeks. Weekly measures of sucrose intake were recorded to evaluate anhedonic behavior, and animals were sacrificed at different weeks of treatment for molecular analyses. RESULTS: We found that CMS-induced anhedonia was progressively improved by lurasidone treatment. Interestingly, after two weeks of lurasidone treatment, 50% of the animals showed a full recovery of the phenotype, which was associated with increased activation of the prefrontal and recruitment of parvalbumin-positive cells that may lead to a restoration of excitatory/inhibitory balance. CONCLUSION: These results suggest that the capacity of lurasidone to normalize anhedonia at an early stage of treatment may depend on its ability to modulate the function of the prefrontal cortex.


Antipsychotic Agents , Lurasidone Hydrochloride , Rats , Male , Animals , Lurasidone Hydrochloride/pharmacology , Anhedonia , Rats, Wistar , Antipsychotic Agents/pharmacology , Prefrontal Cortex , Stress, Psychological/drug therapy
8.
Article En | MEDLINE | ID: mdl-36610613

BACKGROUND: Our earlier study demonstrated that repeated optogenetic stimulation of afferents from ventral hippocampus (vHIP) to the prelimbic region of medial prefrontal cortex (mPFC) overcame resistance to antidepressant treatment in Wistar-Kyoto (WKY) rats. These results suggested that antidepressant resistance may result from an insufficiency of transmission from vHIP to mPFC. Here we examined whether similar effects can be elicited from major output of mPFC; the pathway from to nucleus accumbens core (NAc). METHOD: WKY rats were subjected to Chronic Mild Stress and were used in two sets of experiments: 1) they were treated acutely with optogenetic stimulation of afferents to NAc core originating from the mPFC, and 2) they were treated with chronic (5 weeks) venlafaxine (10 mg/kg) and/or repeated (once weekly) optogenetic stimulation of afferents to NAc originating from either mPFC or vHIP. RESULTS: Chronic mild stress procedure decreased sucrose intake, open arm entries on elevated plus maze, and novel object recognition test. Acute optogenetic stimulation of the mPFC-NAc and vHIP-NAc pathways had no effect in sucrose or plus maze tests, but increased object recognition. Neither venlafaxine nor mPFC-NAc optogenetic stimulation alone was effective in reversing the effects of CMS, but the combination of chronic antidepressant and repeated optogenetic stimulation improved behaviour on all three measures. CONCLUSIONS: The synergism between venlafaxine and mPFC-NAc optogenetic stimulation supports the hypothesis that the mechanisms of non-responsiveness of WKY rats involves a failure of antidepressant treatment to restore transmission in the mPFC-NAc pathway. Together with earlier results, this implicates insufficiency in a vHIP-mPFC-NAc circuit in non-responsiveness to antidepressant drugs.


Depression , Nucleus Accumbens , Rats , Animals , Venlafaxine Hydrochloride/pharmacology , Rats, Inbred WKY , Optogenetics , Antidepressive Agents/pharmacology , Antidepressive Agents/therapeutic use , Antidepressive Agents/metabolism , Models, Animal , Prefrontal Cortex/metabolism
9.
Eur Arch Psychiatry Clin Neurosci ; 273(5): 1041-1050, 2023 Aug.
Article En | MEDLINE | ID: mdl-36018382

Stress is a major precipitating factor for psychiatric disorders and its effects may depend on its duration and intensity. Of note, there are differences in individual susceptibility to stress, with some subjects displaying vulnerability and others showing resistance. Furthermore, the ability to react to stressful-life events can alter the response to a subsequent new stressor. Hence, we investigated whether the vulnerability and resilience to the chronic mild stress (CMS) paradigm, in terms of the hedonic phenotype, are paralleled by a different response when facing a novel acute challenge. Specifically, rats submitted to CMS were stratified based on their sucrose intake into vulnerable (anhedonic rats showing reduce intake of sucrose) and resilient (rats not showing the anhedonic-like behavior) subgroups and then further exposed to an acute restraint stress (ARS). Then, neuronal activation was investigated by measuring the gene expression of early immediate (IEG) genes such as Arc and Cfos and early response (ERG) genes, such as Gadd45ß, Sgk1, Dusp1, and Nr4a1, in brain regions that play a crucial role in the stress response. We found that resilient rats preserve the ability to increase ERG expression following the ARS selectively in the ventral hippocampus. Conversely, such ability is lost in vulnerable rats. Interestingly, the recovery from the anhedonic phenotype observed in vulnerable rats after 3 weeks of rest from the CMS procedure also parallels the restoration of the ability to adequately respond to the challenge. In conclusion, these findings support the role of the ventral subregion of the hippocampus in the management of both chronic and acute stress response and point to this brain subregion as a critical target for a potential therapeutic strategy aimed at promoting stress resilience.


Anhedonia , Hippocampus , Rats , Animals , Anhedonia/physiology , Rats, Wistar , Hippocampus/metabolism , Brain/metabolism , Sucrose/metabolism , Sucrose/pharmacology , Stress, Psychological/drug therapy , Disease Models, Animal
10.
Int J Mol Sci ; 25(1)2023 Dec 23.
Article En | MEDLINE | ID: mdl-38203414

The HSP70 and HSP90 family members belong to molecular chaperones that exhibit protective functions during the cellular response to stressful agents. We investigated whether the exposure of rats to chronic mild stress (CMS), a validated model of depression, affects the expression of HSP70 and HSP90 in the prefrontal cortex (PFC), hippocampus (HIP) and thalamus (Thal). Male Wistar rats were exposed to CMS for 3 or 8 weeks. The antidepressant imipramine (IMI, 10 mg/kg, i.p., daily) was introduced in the last five weeks of the long-term CMS procedure. Depressive-like behavior was verified by the sucrose consumption test. The expression of mRNA and protein was quantified by real-time PCR and Western blot, respectively. In the 8-week CMS model, stress alone elevated HSP72 and HSP90B mRNA expression in the HIP. HSP72 mRNA was increased in the PFC and HIP of rats not responding to IMI treatment vs. IMI responders. The CMS exposure increased HSP72 protein expression in the cytosolic fraction of the PFC and HIP, and this effect was diminished by IMI treatment. Our results suggest that elevated levels of HSP72 may serve as an important indicator of neuronal stress reactions accompanying depression pathology and could be a potential target for antidepressant strategy.


Imipramine , Molecular Chaperones , Male , Rats , Animals , Imipramine/pharmacology , Rats, Wistar , HSP70 Heat-Shock Proteins , Hippocampus , HSP90 Heat-Shock Proteins/genetics , Prefrontal Cortex , RNA, Messenger/genetics , Antidepressive Agents/pharmacology
11.
Int J Mol Sci ; 23(20)2022 Oct 18.
Article En | MEDLINE | ID: mdl-36293308

Neuroinflammation has emerged as an important factor in the molecular underpinnings of major depressive disorder (MDD) pathophysiology and in the mechanism of action of antidepressants. Among the inflammatory mediators dysregulated in depressed patients, interleukin (IL)-6 has recently been proposed to play a crucial role. IL-6 activates a signaling pathway comprising the JAK/STAT proteins and characterized by a specific negative feedback loop exerted by the cytoplasmic protein suppressor of cytokine signalling-3 (SOCS3). On these bases, here, we explored the potential involvement of IL-6 signaling in the ability of the antidepressant drug agomelatine to normalize the anhedonic-like phenotype induced in the rat by chronic stress exposure. To this aim, adult male Wistar rats were subjected to the chronic mild stress (CMS) paradigm and chronically treated with vehicle or agomelatine. The behavioral evaluation was assessed by the sucrose consumption test, whereas molecular analyses were performed in the prefrontal cortex. We found that CMS was able to stimulate IL-6 production and signaling, including SOCS3 gene and protein expression, but the SOCS3-mediated feedback-loop inhibition failed to suppress the IL-6 cascade in stressed animals. Conversely, agomelatine treatment normalized the stress-induced decrease in sucrose consumption and restored the negative modulation of the IL-6 signaling via SOCS3 expression and activity. Our results provide additional information about the pleiotropic mechanisms that contribute to agomelatine's therapeutic effects.


Depressive Disorder, Major , Interleukin-6 , Animals , Rats , Male , Interleukin-6/genetics , Interleukin-6/metabolism , Depression/drug therapy , Depression/etiology , Depression/metabolism , Rats, Wistar , Depressive Disorder, Major/drug therapy , Antidepressive Agents/pharmacology , Antidepressive Agents/therapeutic use , Signal Transduction , Inflammation Mediators/metabolism , Suppressor of Cytokine Signaling Proteins/metabolism , Sucrose
12.
Int J Mol Sci ; 23(16)2022 Aug 11.
Article En | MEDLINE | ID: mdl-36012250

The preclinical research conducted so far suggest that depression development may be influenced by the inflammatory pathways both at the periphery and within the central nervous system. Furthermore, inflammation is considered to be strongly connected with antidepressant treatment resistance. Thus, this study explores whether the chronic mild stress (CMS) procedure and agomelatine treatment induce changes in TGFA, TGFB, IRF1, PTGS2 and IKBKB expression and methylation status in peripheral blood mononuclear cells (PBMCs) and in the brain structures of rats. Adult male Wistar rats were subjected to the CMS and further divided into matched subgroups to receive vehicle or agomelatine. TaqMan gene expression assay and methylation-sensitive high-resolution melting (MS-HRM) were used to evaluate the expression of the genes and the methylation status of their promoters, respectively. Our findings confirm that both CMS and antidepressant agomelatine treatment influenced the expression level and methylation status of the promoter region of investigated genes in PBMCs and the brain. What is more, the present study showed that response to either stress stimuli or agomelatine differed between brain structures. Concluding, our results indicate that TGFA, TGFB, PTGS2, IRF1 and IKBKB could be associated with depression and its treatment.


Acetamides , Brain , Leukocytes, Mononuclear , Naphthalenes , Acetamides/pharmacology , Animals , Antidepressive Agents/pharmacology , Brain/drug effects , Brain/metabolism , Cyclooxygenase 2/genetics , Cyclooxygenase 2/metabolism , DNA Methylation , Disease Models, Animal , I-kappa B Kinase/metabolism , Leukocytes, Mononuclear/metabolism , Male , Naphthalenes/pharmacology , Promoter Regions, Genetic , Rats , Rats, Wistar , Stress, Psychological
13.
Psychopharmacology (Berl) ; 239(7): 2299-2307, 2022 Jul.
Article En | MEDLINE | ID: mdl-35292832

BACKGROUND: High frequency optogenetic stimulation (OGS) of prelimbic cortex (PLC) has been reported to exert antidepressant-like effects in the chronic mild stress model of depression in Wistar Kyoto (WKY) rats, which are non-responsive to antidepressant drugs. Here we have examined the effect of OGS on activity in the PLC and in two other regions implicated in depression, the nucleus accumbens (NAc) and hippocampus (HPC). METHOD: OGS was applied to the PLC of WKY rats using the same stress schedule, and the identical placement, virus infection and stimulation parameters, used in the earlier behavioural experiments. Confocal microscopy was used to identify cells co-expressing the immediate early gene c-Fos and markers of GABAergic (GAD) and glutamatergic (CaMKII) neurons. RESULTS: Stress decreased sucrose intake, which was restored by OGS. Stress also caused an overall decrease in Fos expression in the structures examined. In stressed animals, but not in non-stressed controls, OGS in mPFC increased the number of Fos+ cells in both the core and shell of the NAc (where the vast majority of cells are GABAergic), and increased the number and proportion of active GABAergic, but not glutamatergic, cells in dorsal and ventral HPC and dentate gyrus. CONCLUSIONS: We conclude that OGS of PLC has a net excitatory effect on outputs from the PLC, leading to an overall inhibitory effect in structures innervated (NAc and HPC).


Nucleus Accumbens , Optogenetics , Animals , Antidepressive Agents/pharmacology , Hippocampus/metabolism , Prefrontal Cortex , Rats , Rats, Inbred WKY
14.
Transl Psychiatry ; 12(1): 87, 2022 02 28.
Article En | MEDLINE | ID: mdl-35228511

Stress is the foremost environmental factor involved in the pathophysiology of major depressive disorder (MDD). However, individual differences among people are critical as some people exhibit vulnerability while other are resilient to repeated exposure to stress. Among the others, a recent theory postulates that alterations of energy metabolism might contribute to the development of psychopathologies. Here we show that the bioenergetic status in the ventral hippocampus (vHip), a brain subregion tightly involved in the regulation of MDD, defined the development of vulnerability or resilience following two weeks of chronic mild stress. Among the different metabolomic signatures observed, the glycolysis and tricarboxylic acid cycle may be specifically involved in defining vulnerability, revealing a previously unappreciated mechanism of sensitivity to stress. These findings point to mitochondrial morphology and recycling as critical in the ability to cope with stress. We show that vulnerable rats favor mitochondrial fusion to counteract the overproduction of reactive oxidative species whereas resilient rats activate fission to guarantee metabolic efficiency. Our results indicate that the modulation of the energetic metabolite profile in vHip under chronic stress exposure may represent a mechanism to explain the difference between vulnerable and resilient rats, unraveling novel and promising targets for specific therapeutic interventions.


Depressive Disorder, Major , Resilience, Psychological , Animals , Depressive Disorder, Major/metabolism , Hippocampus/metabolism , Humans , Metabolomics , Mitochondrial Dynamics , Rats , Stress, Psychological/metabolism
15.
Br J Pharmacol ; 179(17): 4181-4200, 2022 09.
Article En | MEDLINE | ID: mdl-34128229

A high proportion of depressed patients fail to respond to antidepressant drug treatment. Treatment-resistant depression (TRD) is a major challenge for the psychopharmacology of mood disorders. Only in the past decade have novel treatments, including deep brain stimulation (DBS) and ketamine, been discovered that provide rapid and sometimes prolonged relief to a high proportion of TRD sufferers. In this review, we consider the current status of TRD from four perspectives: the challenge of developing an appropriate regulatory framework for novel rapidly acting antidepressants; the efficacy of non-pharmacological somatic therapies; the development of an animal model of TRD and its use to understand the neural basis of antidepressant non-response; and the potential for rapid antidepressant action from targets (such as 5-HT1A receptors) beyond the glutamate receptor. LINKED ARTICLES: This article is part of a themed issue on New discoveries and perspectives in mental and pain disorders. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v179.17/issuetoc.


Depressive Disorder, Treatment-Resistant , Ketamine , Animals , Antidepressive Agents/pharmacology , Antidepressive Agents/therapeutic use , Depression , Depressive Disorder, Treatment-Resistant/drug therapy , Ketamine/pharmacology , Ketamine/therapeutic use
16.
J Psychopharmacol ; 35(10): 1253-1264, 2021 Oct.
Article En | MEDLINE | ID: mdl-34617804

BACKGROUND: There is extensive evidence that antidepressant drugs restore normal brain function by repairing damage to ventral hippocampus (vHPC) and medial prefrontal cortex (mPFC). While the damage is more extensive in hippocampus, the evidence of treatments, such as deep brain stimulation, suggests that functional changes in prefrontal cortex may be more critical. We hypothesized that antidepressant non-response may result from an insufficiency of transmission from vHPC to mPFC. METHOD: Antidepressant non-responsive Wistar Kyoto (WKY) rats were subjected to chronic mild stress (CMS), then treated with chronic daily administration of the antidepressant drug venlafaxine (VEN) and/or repeated weekly optogenetic stimulation (OGS) of afferents to mPFC originating from vHPC or dorsal HPC (dHPC). RESULTS: As in many previous studies, CMS decreased sucrose intake, open-arm entries on the elevated plus maze (EPM), and novel object recognition (NOR). Neither VEN nor vHPC-mPFC OGS alone was effective in reversing the effects of CMS, but the combination of chronic VEN and repeated OGS restored normal behaviour on all three measures. dHPC-mPFC OGS restored normal behaviour in the EPM and NOR test irrespective of concomitant VEN treatment, and had no effect on sucrose intake. CONCLUSIONS: The synergism between VEN and vHPC-mPFC OGS supports the hypothesis that the antidepressant non-responsiveness of WKY rats results from a failure of antidepressant treatment fully to restore transmission in the vHPC-mPFC pathway.


Antidepressive Agents/pharmacology , Depression/drug therapy , Stress, Psychological/drug therapy , Venlafaxine Hydrochloride/pharmacology , Animals , Depression/physiopathology , Disease Models, Animal , Hippocampus/pathology , Male , Maze Learning/drug effects , Optogenetics/methods , Prefrontal Cortex/pathology , Rats , Rats, Inbred WKY , Stress, Psychological/physiopathology
17.
Neurobiol Stress ; 15: 100372, 2021 Nov.
Article En | MEDLINE | ID: mdl-34401408

Several intracellular pathways that contribute to the adaptation or maladaptation to environmental challenges mediate the vulnerability and resilience to chronic stress. The activity of the hypothalamic-pituitary-adrenal (HPA) axis is fundamental for the proper maintenance of brain processes, and it is related to the functionality of the isoform alfa and beta of the glucocorticoid receptor (Gr), the primary regulator of HPA axis. Among the downstream effectors of the axis, the scaffolding protein RACK1 covers an important role in regulating synaptic activity and mediates the transcription of the neurotrophin Bdnf. Hence, by employing the chronic mild stress (CMS) paradigm, we studied the role of the Grß-RACK1-Bdnf signaling in the different susceptibility to chronic stress exposure. We found that resilience to two weeks of CMS is paralleled by the activation of this pathway in the ventral hippocampus, the hippocampal subregion involved in the modulation of stress response. Moreover, the results we obtained in vitro by exposing SH-SY5Y cells to cortisol support the data we found in vivo. The results obtained add novel critical information about the link among Gr, RACK1 and Bdnf and the resilience to chronic stress, suggesting novel targets for the treatment of stress-related disorders, including depression.

18.
Int J Mol Sci ; 22(12)2021 Jun 08.
Article En | MEDLINE | ID: mdl-34201279

Epigenetics is one of the mechanisms by which environmental factors can alter brain function and may contribute to central nervous system disorders. Alterations of DNA methylation and miRNA expression can induce long-lasting changes in neurobiological processes. Hence, we investigated the effect of chronic stress, by employing the chronic mild stress (CMS) and the chronic restraint stress protocol, in adult male rats, on the glucocorticoid receptor (GR) function. We focused on DNA methylation specifically in the proximity of the glucocorticoid responsive element (GRE) of the GR responsive genes Gadd45ß, Sgk1, and Gilz and on selected miRNA targeting these genes. Moreover, we assessed the role of the antipsychotic lurasidone in modulating these alterations. Chronic stress downregulated Gadd45ß and Gilz gene expression and lurasidone normalized the Gadd45ß modification. At the epigenetic level, CMS induced hypermethylation of the GRE of Gadd45ß gene, an effect prevented by lurasidone treatment. These stress-induced alterations were still present even after a period of rest from stress, indicating the enduring nature of such changes. However, the contribution of miRNA to the alterations in gene expression was moderate in our experimental conditions. Our results demonstrated that chronic stress mainly affects Gadd45ß expression and methylation, effects that are prolonged over time, suggesting that stress leads to changes in DNA methylation that last also after the cessation of stress procedure, and that lurasidone is a modifier of such mechanisms.


Epigenesis, Genetic , Gene Expression Regulation/drug effects , Glucocorticoids/metabolism , Lurasidone Hydrochloride/pharmacology , Prefrontal Cortex/metabolism , Receptors, Glucocorticoid/metabolism , Stress, Psychological , Animals , Antipsychotic Agents/pharmacology , Disease Models, Animal , Male , Prefrontal Cortex/drug effects , Prefrontal Cortex/pathology , RNA, Messenger , Rats , Rats, Wistar , Receptors, Glucocorticoid/genetics
19.
Genes (Basel) ; 12(5)2021 04 29.
Article En | MEDLINE | ID: mdl-33946816

Preclinical studies conducted to date suggest that depression could be elicited by the elevated expression of proinflammatory molecules: these play a key role in the mediation of neurochemical, neuroendocrine and behavioral changes. Thus, this study investigates the effect of chronic mild stress (CMS) and administration of venlafaxine (SSRI) on the expression and methylation status of new target inflammatory genes: TGFA, TGFB, IRF1, PTGS2 and IKBKB, in peripheral blood mononuclear cells (PMBCs) and in selected brain structures of rats. Adult male Wistar rats were subjected to the CMS and further divided into matched subgroups to receive vehicle or venlafaxine. TaqMan gene expression assay and methylation-sensitive high-resolution melting (MS-HRM) were used to evaluate the expression of the genes and the methylation status of their promoters, respectively. Our results indicate that both CMS and chronic treatment with venlafaxine were associated with changes in expression of the studied genes and their promoter methylation status in PMBCs and the brain. Moreover, the effect of antidepressant administration clearly differed between brain structures. Summarizing, our results confirm at least a partial association between TGFA, TGFB, IRF1, PTGS2 and IKBKB and depressive disorders.


Brain/metabolism , DNA Methylation , Leukocytes, Mononuclear/metabolism , Serotonin and Noradrenaline Reuptake Inhibitors/pharmacology , Stress, Psychological/genetics , Transcriptome , Venlafaxine Hydrochloride/pharmacology , Animals , Brain/drug effects , Cyclooxygenase 2/genetics , Cyclooxygenase 2/metabolism , I-kappa B Kinase/genetics , I-kappa B Kinase/metabolism , Interferon Regulatory Factor-1/genetics , Interferon Regulatory Factor-1/metabolism , Leukocytes, Mononuclear/drug effects , Male , Rats , Rats, Wistar , Serotonin and Noradrenaline Reuptake Inhibitors/therapeutic use , Stress, Psychological/drug therapy , Stress, Psychological/metabolism , Transforming Growth Factor beta/genetics , Transforming Growth Factor beta/metabolism , Venlafaxine Hydrochloride/therapeutic use
20.
Int J Mol Sci ; 22(1)2020 Dec 22.
Article En | MEDLINE | ID: mdl-33374959

Previous studies suggest that depression may be associated with reactive oxygen species overproduction and disorders of the tryptophan catabolites pathway. Moreover, one-third of patients do not respond to conventional pharmacotherapy. Therefore, the study investigates the molecular effect of escitalopram on the expression of Cat, Gpx1/4, Nos1/2, Tph1/2, Ido1, Kmo, and Kynu and promoter methylation in the hippocampus, amygdala, cerebral cortex, and blood of rats exposed to CMS (chronic mild stress). The animals were exposed to CMS for two or seven weeks followed by escitalopram treatment for five weeks. The mRNA and protein expression of the genes were analysed using the TaqMan Gene Expression Assay and Western blotting, while the methylation was determined using methylation-sensitive high-resolution melting. The CMS caused an increase of Gpx1 and Nos1 mRNA expression in the hippocampus, which was normalised by escitalopram administration. Moreover, Tph1 and Tph2 mRNA expression in the cerebral cortex was increased in stressed rats after escitalopram therapy. The methylation status of the Cat promoter was decreased in the hippocampus and cerebral cortex of the rats after escitalopram therapy. The Gpx4 protein levels were decreased following escitalopram compared to the stressed/saline group. It appears that CMS and escitalopram influence the expression and methylation of the studied genes.


Brain/drug effects , Citalopram/pharmacology , DNA Methylation/drug effects , Gene Expression Regulation/drug effects , Metabolic Networks and Pathways/genetics , Stress, Psychological/physiopathology , Tryptophan/metabolism , Animals , Antidepressive Agents, Second-Generation/pharmacology , Brain/metabolism , Catalase/genetics , Catalase/metabolism , Chronic Disease , Depression/genetics , Depression/metabolism , Glutathione Peroxidase/genetics , Glutathione Peroxidase/metabolism , Leukocytes, Mononuclear/drug effects , Leukocytes, Mononuclear/metabolism , Male , Nitric Oxide Synthase Type I/genetics , Nitric Oxide Synthase Type I/metabolism , Nitrosative Stress , Oxidative Stress , Rats, Wistar , Tryptophan Hydroxylase/genetics , Tryptophan Hydroxylase/metabolism , Glutathione Peroxidase GPX1
...